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ABSTRACT

We studied the effect of ablating the carotid bodies (CBx) on

resting pulmonary ventilation of awake goats, on composition of

their arterial blood and CSF, and on responses to respiratory

stimuli (hypercapnia, hypoxia, injection of cyanide). Hyperventila-

tion in response to acute hypoxia was abolished. The ventilatory

response to injection of cyanide was markedly diminished but not

completely abolished after CBx; onset of the response was delayed

and the interaction of cyanide and hypoxia appeared eliminated.

Resting pulmonary ventilation was reduced by almost one fifth, and

PaCO-'was increased following CBx. In CSF, pH and PCO)were not
2 

2
different before and after CBx, suggesting that the stimulus for the

central chemoreceptor was not diminished. The difference in PCO2'

between arterial blood and CSF was reduced after CBx. In spite of

the resting hypercapnia after CBx, the goats responded to hyperoxic

CO-{rebreathing with a similar increase in ventilation before and

after CBx. We conclude that the carotid bodies contribute signifi-

cantly to the resting respiratory drive in normoxic goats. The in-

crease in ventilation in response to acute hypercapnia appears to be

mediated by the central chemoreceptors.

Key words: CO2 production, CSF, CO2 rebreathing, cyanide, awake goats



INTRODUCTION

Controversies still exist concerning contribution of the

peripheral chemoreceptors to the total ventilatory drive. There

is general agreement that after ablation of the carotid bodies

(CBx) the ventilatory response to hypoxia is abolished. Quanti-

tative contribution of the carotid bodies (CB) to resting

ventilatory drive is uncertain: most studies conclude that CBx

leads to decrease in resting pulmonary ventilation with hypercapnia

(3, 4, 11, 30), while some disagree (18). Both decreased and

undiminished responsiveness to CO2 after CBx have been reported

(16, 18, 27, 30). We report the results of a study in unanesthetized

goats, designed to evaluate the effect of CBx on resting ventilation,

on composition of arterial blood and CSF (the latter as an indicator

of input into the "central" chemoreceptors), and on ventilatory

responsiveness to chemical stimuli (hypercapnia, hypoxia, hyperoxia).

We also present observations on the effect of CBx on the ventilatory

response to injection of cyanide, a time-honored test for detecting

the functional integrity of the peripheral chemoreceptors (21).

METHODS

Operative Procedures

Skin-denervated carotid loops were produced in goats for

sampling arterial blood, and nylon guide tubes were implanted in

the occipital bones for repeated sampling of CSF, following the

techniques of Pappenheimer et al (22).
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The carotid bodies were excised under general anesthesia.

From a ventral midline incision in the neck, the carotid arteries

and their bifurcations were exposed by blunt dissection between

the sternocephalic and sternohyoid muscles. The adventitia was

dissected from the arterial walls, from 3-4 cm below to an equal

distance above the bifurcation, and all visible nerve fibers close

to the bifurcation were resected. Saturated solution of phenol in

95% ethyl alcohol was applied to the denuded arterial walls with a

sterile cotton-tipped applicator, which produced necrosis of the

superficial layer. The area was then flushed with sterile saline,

and the wound sutured in layers. The wounds healed within two

weeks. The effect of this intervention was tested during the 3rd

or 5th week after operation and again five months later by injecting

a bolus of cyanide into the pulmonary artery, as described below.

Experimental Design

We studied five goats weighing 36-48 kg (mean 42 kg). Each

goat was studied twice before and twice after CBx. Means of the

two measurements in each condition were used for data analysis.

* On each experimental day, we punctured the cisterna magna

through the guide tube, without anesthesia, and percutaneously in-

serted a plastic catheter into the carotid artery in the denervated

skin loop. We then measured resting ventilation 0VE) and CO2 pro-

duction (VC02) and anaerobically withdrew a sample of cisternal CSF.

Finally, we tested ventilatory responsiveness to CO2 using a modifica-

tion of Read's method of hyperoxic rebreathing (25).
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Blood pressure in the carotid and pulmonary artery was measured

with transducers (Statham 23DB and 23DC).

Respiratory Measurements

A latex rubber respiratory mask was fitted over the goat's snout.

Volume of expired gas was measured with a Wedge spirometer (Med-Science

Electronics), while concentration of CO2 and 02 at the airway was

measured with an infrared analyzer (Beckman LB-2) and a mass spectro-

meter (Perkin Elmer). Outputs of the gas analyzers and Wedge spiro-

meter were displayed on a Brush strip-chart recorder (Gould Inc.) and

recorded with a magnetic tape recorder (Hewlett Packard, Model 3968).

Ventilation was calculated breath-by-breath by computer.

For measurement of VE and VCO2 1 the goats inhaled room air

through a low resistance valve (J-valve, dead space 92 ml; Warren E.

Collins). Arterial blood was sampled and expired minute ventilation

and PCO 2 in mixed expired gas measured when a steady state in gas ex-

change was apparent from stability of the end-tidal PCO 2 (PETC02 ).

Alveolar ventilation 0A) was calculated using Enghoff's modification

of Bohr's formula for respiratory dead space. The ventilatory data

were normalized to body weight 40 kg.

During CO2 rebreathing, the respiratory mask was connected

through short-length wide-bore tubing to a three-way Y valve. One

of the ports of the valve was open to air, the other connected to

a rebreathing bag enclosed in a rigid box. The box was connected

by wide-bore tubing to a Wedge spirometer. Gas continuously sampled

at the junction of the mask and tubing was analyzed for CO2 . Each
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rebreathing test was begun with 5 liters of gas (7% CO2 , balance

02) in the bag. When end-tidal PCO 2 was stable with the goat inhal-

ing room air, the Y valve was turned at end-expiration so that the

goat would subsequently inspire from and expire into the rebreathing

bag. Rebreathing continued until PETco2 was about 65 torr, or until

Figure 1 the goat became restless (Figure 1, top). Three to five runs of re-

breathing were performed on each experimental day, separated by 10

minute periods of breathing room air. Minute ventilation was plotted

breath-by-breath as a function of the simultaneously measured PETCo 2,

and linear regressions were calculated for these plots. Ventilatory

responsiveness to CO2 was evaluated from slopes of these plots and

from values of VE at PETC02 = 60 torr (Figure 1, bottom).

Testing the Effect of Ablation of Carotid Bodies

A balloon-tipped catheter was introduced percutaneously into the

pulmonary artery from the external jugular vein. The goats breathed

through a mask and a non-rebreathing valve into a circuit made up of

wide-bore tubing and a CO2 absorber, with a T-piece connector leadingI2
to a bag-in-box. Pulmonary ventilation was measured with a Wedge

spirometer attached to the box. Flow of oxygen and nitrogen into the

circuit was controlled with flowmeters to produce hyperoxia or

hypoxia. PCO 2 and PO2 were monitored continuously at the airway.

When end-tidal PCO 2, PO2 and ventilation were stable, a bolus of

cyanide (I pM/kg body weight, as sodium or potassium salt, in 3 ml

of saline) was injected into the pulmonary artery. Injections of

blanks (3 ml saline or 1 pM/kg KCI in 3 ml saline) did not elicit
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any ventilatory response. The response to cyanide injection was

quantitated by computer as liters of ventilation in excess of the

control value, integrated over time of the duration of response

(A V, liters, BTPS).

Analytical Techniques

PCO 2, PO2 and pH in arterial blood and CSF were measured at

37C with Radiometer electrodes and electronics (BMS 3 MK2); cor-

rections were made for rectal temperature (13, 20). The electrodes

were calibrated with precision buffers (Radiometer) and with gases

analzed for 02 and CO2 with the Scholander apparatus. CO2 concen-

tration (CC02) in CSF was measured with a Natelson microgasometer

(Scientific Industries). [CIU] was measured in anaerobically separ-

ated plasma and in CSF by potentiometric titration (Aminco-Cotlove,

American Instruments). [HCO-] in plasma and in CSF were calculated

from measured pH and PCO 2 or CCO 2 using published values for pK'

and CO2 solubilities (20). Base excess (BE) was determined from the

measured arterial PCO 2 and pH with a Blood Gas Calculator (26).

Statistical Analyses

Statistical significance (p < 0.05) was determined by the

Student's t-test, by analysis of variance, or by a non-parametric

test of variance (7), as indicated.

RESULTS

After CBx, resting pulmonary ventilation of the goats decreased,

as shown in Table 1. Both VE and VA decreased by almost one-fifth



6

(p < 0.05). Surprisingly, the mean VCO 2 was also somewhat diminished,

by 11 percent (statistically not significant). Forster et al (11)

also observed a decrease in VCO 2 in chemodenervated goats. VA de-

creased more than VC02, so that PaCO 2 was elevated after CBx, by 3.0

+ 0.6 torr (mean ± S.E., p < 0.01). This mild respiratory acidosis

did not elicit any detectable renal compensation: arterial-blood pH

was lower by 0.027 ± 0.007 units (p < 0.05), while BE, [HCO5], and

[CI] remained unchanged. Mean PaO 2 was not altered by CBx

(Table 1).

In CSF, PCO 2 did not change after CBx, and the small increase

in [HC03] and decrease in [CI-] were not statistically significant.

Table 2 CSF pH was unchanged (Table 2).

The difference between PCO 2 in CSF and in arterial blood decreased

after CBx in all observations (Figure 2). In intact goats, the mean

Figure 2 (± S.E.) value for (PCSFc02 - PaC0 2) was 7.0 ± 1.0 torr; after CBx,

it was reduced to 4.9 ± 0.3 torr (p < 0.05, Wilcoxon test).

Response of the goats to hyperoxic CO2 rebreathing was altered

by CBx. With CB intact, the goats usually became restless to the

point that the rebreathing had to be terminated at PETCo 2 values

around 65 torr. After CBx, the goats tolerated PETCo 2 values of 75 -

80 torr with equanimity (Figure 1). While mean slopes of the CO2
response curves were similar before and after removal of the CB,

Table 3 (Table 3), mean minute ventilation at PETCo 2 = 60 torr was reduced

from the control value by 42 percent (p < 0.01), indicating that

position of the CO2 response curves was shifted to higher PETCO 2

Figure 3 values (Figure 3).
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Ventilatory responses to transitory (5 - 10 min) hypoxia (PaO 2

45 - 60 torr) and hyperoxia (PaO 2 > 300 torr) are summarized in

Table 4. These data are based on measurements during control

periods when responsiveness to cyanide was tested 3 - 5 weeks and

5 months after CBx (see below). With the CB intact, the goats in-

creased their minute ventilation when acutely hypoxic, on the aver-

age by 22 percent; with acute hyperoxia, their mean ventilation de-

creased by 15 percent. After CBx, pulmonary ventilation was not

affected by hypoxia; when hyperoxic, the denervated goats increased

their ventilation, on the average by 33 percent.

Ventilatory response to a standardized bolus of cyanide injected

into the pulmonary artery is shown in Table 5. When the CB were in-

tact, the goats responded with 4.3 ± 0.4 liters of excess ventilation

(see Methods for definition) while hyperoxic (PaO 2 > 300 torr).

With acute hypoxia (PaO 2 45 - 60 torr), the response to cyanide

bolus was almost doubled (p < 0.01). After CBx the response to

cyanide was markedly reduced, being just barely detectable on the

record of tidal volumes and end-tidal PCO2. However, computer

analysis of these data revealed that three-to-five weeks after CBx

the goats still responded with some excess ventilation to cyanide in-

jection. This was significantly less than when the CB were intact

(p < 0.05 during hyperoxia, p < 0.01 during hypoxia). After CBx,

the interaction between cyanide injection and acute hypoxia although

suggested by the mean values (Table 5), was not statistically sig-

nificant. Furthermore, the onset of hyperventilation after cyanide

injection was delayed when the CB were removed: the mean interval

._ - ~...
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between time of injection of cyanide into the pulmonary artery and

first detectable increase in tidal volume was prolonged by 2.9

seconds (p < 0.02). The ventilatory response to cyanide injection

five months after CBx was not statistically different from that

3 - 5 weeks after the operation.

DISCUSSION

Acute hypoxia and hyperoxia (of 5 - 10 minutes duration) pro-

duced the expected qualitative changes in pulmonary ventilation

(31). With CB intact, the goats hyperventilated during acute

hypoxia, and decreased their ventilation somewhat during hyperoxia.

After CBx, ventilation did not change with acute hypoxia, while

hyperoxia produced an increase in ventilation. Stimulation of

ventilation by hyperoxia has been reported in chemodenervated dogs

(8) and cats (19). The mechanism of this hyperventilation has not

been elucidated (19).

The combination of surgical and chemical destruction of the CB

did not completely abolish ventilatory responses of the goats to in-

jection of a bolus of cyanide into the pulmonary artery. This was

similar to the findings of Forster et al (11) in the same species.

It is unlikely that stimulation of the aortic bodies by cyanide was

the source of this residual ventilatory response, for several reasons.

First, the onset of the response after CBx was delayed by an average

of almost 3 seconds. Gonzales et al (14) also found that the latency

time in ventilatory response to injection of KCN into the superior

vena cava increased by more than 2 seconds after CBx in anesthetized
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dogs. Since with resting cardiac output the mean velocity of flow

in the central arteries i5 about 30 cm/sec (6), the structures still

responding to cyanide have to be located appreciably farther down-

stream from the CB. Secondly, in the observations of Forster et al

(11), surgical denervation of the aortic chemoreceptors did not

abolish the residual ventilatory response to cyanide in goats with

excised CB. Finally, if interaction of the cyanide stimulus with

hypoxia is characteristic of arterial chemoreceptors (21), our

finding of markedly diminished or abolished interaction in dener-

vated goats would suggest that such chemoreceptors are not likely

to be involved in the residual ventilatory response to cyanide

after CBx. A possible mechanism of ventilatory stimulation by

cyanide in the absence of peripheral chemoreceptors could be a

direct effect of cyanide on the medullary chemoreceptors, as de-

scribed in fetal lambs by Jansen and Chernick (15). Cyanide can

easily cross the blood-brain barrier by diffusion. The acid dis-

sociation constant of HCN is 7.2 x 10-10 M/l (5); at pH values

existing in body fluids, more than 98 percent is in the associated

form, which is volatile and lipid-soluble. The delay in onset of

hyperpnea after cyanide injection in denervated goats would be

compatible with this interpretation. There may be other intra-

cranial sites or mechanisms. Another possibility is that cyanide

stimulates ventilation by an extracranial mechanism other than the

carotid or aortic chemoreceptors, as proposed by Levine (17). In

any case, we conclude that our goats were deprived of peripheral

chemoreceptor function after CBx, despite the presence of a vestigial

ventilatory response to cyanide. These findings persisted throughout
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the 5 months of our observation, in contrast with the observations

of Bisgard et al (2) who found in ponies that function of the peri-

pheral chemoreceptors recovered partially after cutting the carotid

sinus nerves and stripping the adventitia of the aortic arch; this

recovery began 2 months after operation.

The average resting pulmonary ventilation of awake goats was

significantly depressed, and PaCO2 elevated after CBx. These find-

ings are in agreement with those of Forster et al (11), and Tenney

and Brooks (27) in the same species. Hypercapnia after "peripheral

chemodenervation" by excision of the CB or by severing their affer-

ent nerves has also been found in other species, including rat (9),

rabbit (4), cat (16, 19), dog (4), and pony (3, 12). Findings in

humans have been conflicting: both hypercapnia and normocapnia at

rest have been reported in asthmatic humans who underwent bilateral

excision of CB (18) and in patients who were "chemodenervated" as

a result of bilateral carotid endarterectomy (30).

We found no significant change in pH of cisternal CSF after

CBx. This suggests that the input into the "central" chemoreceptors

remained the same while the resting ventilation diminished after

CBx. Therefore, we conclude with others (3, 4, 8, 9, 11, 12, 16,

19, 27, 30, 31) that the CB contribute significantly to the resting

ventilatory drive.

Ablation of the carotid bodies produced a "right shift" of the

CO2 response curves, to higher PCO 2 values; however, slopes of the

plots were unchanged. Thus, in spite of hypoventilation at rest,

ventilatory responsiveness of the goats to acute hypercapnia was
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not diminished by CBx. This is in agreement with findings in awake

goats (27) and in anesthetized cats (16). In humans, Wade et al (30)

studied the effect of hyperoxic CO2 inhalation following loss of

carotid chemoreceptor function after bilateral carotid endarterectomy.

Their findings were also similar to ours; resting PaCO 2 was increased

after the operation, and CO2 response curves were shifted to higher

PCO 2 levels, with mean (± S.E.) slopes of the plots (reconstructed

from Figure 2, l.c.) unchanged: 2.2 ± 0.3 and 2.1 ± 0.4 L/(min x

torr) before and after the operation, respectively. On the other

hand, Lugliani et al (18) concluded that in asthmatic subjects with

resected CB, the increment in ventilation in response to increase in

PaCO2 was reduced by 30 percent compared to control subjects. Their

patients were not hypercapnic at rest and had normal blood pressures.

The authors speculated on the possible role of the "central" chemo-

receptors in determining the resting PaCO 2 after surgical destruction

of the CB. They hypothesized that with carotid endarterectomy or

with hypertension caused by loss of baroreceptor function, cerebral

perfusion pressure may be increased, and lowering of cerebral-tissue

PCO 2 owing to increased cerebral blood flow may decrease the stimulus

for the central chemoreceptors, allowing hypercapnia to persist. In

our observations, CBx did not produce hypertension or increase vari-

ability of blood pressure. While undisturbed and standing quietly in

the stanchion, the goats had average systolic/diastolic blood pressures

of 119/84 torr (mean ± SD arterial pressure 98 ± 9 torr), and 122/85

torr (mean ± SD arterial pressure 101 ± 6 torr) before and after CBx,

respectively. During CO2 rebreathing, the average (± SD) increase in

mean blood pressure was similar before and after CBx, 6 ± 1 and 7 ± 2
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torr, respectively. In cisternal CSF, which during normoxia is be-

lieved to reflect the ionic composition of the environment of the

central chemoreceptors (10), there was no indication of a diminished

input: PCO 2 and pH were not different from their values before CBx.

Thus, the mechanism proposed by Lugliani et al (18) would not explain

the resting hypercapnia in our goats after CBx.

We did not measure cerebral blood flow in our goats, however,

the finding of a decrease in the difference in PCO2 between arterial

blood and CSF after CBx suggests, at least qualitatively, that cerebral

perfusion was increased in proportion to the cerebral CO2 production.

Role of the CB in the control of cerebral vessels, if any, is contro-

versial (24). Stimulation of the CB with hypercapnia and hypoxia in-

creased CBF in baboons (23), and had no effect in dogs (30). Ablation

of the CB reduced cerebral vasodilatation in response to hypoxia and

hypercapnia on one study (23) but not in another (1). These experi-

ments involved general anesthesia or complex surgical modification of

the vascular anatomy. General anesthesia seems to alter the cerebral

vascular responses to stimulation of peripheral chemoreceptors and

baroreceptors (29). We are not aware of any direct measurements in

intact awake animals or in humans that would have explored vascular

responsiveness to hypercapnia (or hypoxia) after peripheral chemo-

denervation. If cerebral blood flow was indeed higher in our goats

after CBx, this could be ascribed to the observed increase in rest-

ing PaCO 2. Further experiments are needed, with direct measurements

of CBF and cerebral-tissue PCO 2 at rest and during CO2 rebreathing

in awake animals, to elucidate whether changes in the regulation of
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CBF play any role in the functioning of the central chemoreceptors

after peripheral chemodenervation.

The findings that animals and humans deprived of peripheral

chemoreceptors hypoventilate at rest, yet respond with an undiminished

increase in ventilation to stimulation with CO2 is intriguing.

Phenomenally, this can be categorized as resetting of the controller,

while the gain of the controller is unchanged. It would appear from

our data that input from the CB influences the set-point of the con-

troller, while the gain, unaffected by CBx, seems to be determined

by other mechanisms including central chemoreceptors.

lJ
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LEGENDS TO FIGURES

Figure 1. Hyperoxic (PaO 2 > 300 torr) CO2 rebreathing in goat

SP before (A) and after (B) ablation of carotid

bodies. Top panel: record of PCO 2 at the airway

and tidal breathing (VT). Bottom panel: plot of

expired minute ventilation (VE), derived by computer

breath-by-breath, against end-tidal PCO 2 (PETc02).

Least-square regressions of the plots are given.

The vertical dotted line indicates VE at PET = 60

torr (see text). In A, rebreathing was

terminated at PETCo 2 < 65 torr because the goat

became restless. In B, the goat tolerated increase

in PETco2 to almost 75 torr with equanimity.

Figure 2. Effect of ablation of the carotid bodies on the dif-

ference in PCO2 between CSF and arterial blood. The

points joined by a broken line indicate mean values.

Figure 3. Mean ventilatory responses to hyperoxic (PaO 2 > 300

torr) CO2 rebreathing, constructed from the mean

* (± S.E.) values of expired minute ventilation (0E)

at end-tidal PCO2 (PETC02 ) of 60 torr, and from

mean values of the slopes of the plots of VE vs

PETC02. See Table 3 for numerical data.
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The views, opinions, and/or findings contained in this report are those of the
author(s) and should not be construed as an official department of the Army
position, policy, or decision, unless so designated by other official documentation.


